A combinatorial analysis of Severi degrees
نویسنده
چکیده
Based on results by Brugallé and Mikhalkin, Fomin and Mikhalkin give formulas for computing classical Severi degreesN using long-edge graphs. In 2012, Block, Colley and Kennedy considered the logarithmic version of a special function associated to long-edge graphs which appeared in Fomin-Mikhalkin’s formula, and conjectured it to be linear. They have since proved their conjecture. At the same time, motivated by their conjecture, we consider a special multivariate function associated to long-edge graphs that generalizes their function. The main result of this paper is that the multivariate function we define is always linear. The first application of our linearity result is that by applying it to classical Severi degrees, we recover quadraticity of Q and a bound δ for the threshold of polynomiality of N. Next, in joint work with Osserman, we apply the linearity result to a special family of toric surfaces and obtain universal polynomial results having connections to the Göttsche-Yau-Zaslow formula. As a result, we provide combinatorial formulas for the two unidentified power series B1(q) and B2(q) appearing in the Göttsche-Yau-Zaslow formula. The proof of our linearity result is completely combinatorial. We define τ -graphs which generalize long-edge graphs, and a closely related family of combinatorial objects we call (τ ,n)-words. By introducing height functions and a concept of irreducibility, we describe ways to decompose certain families of (τ ,n)-words into irreducible words, which leads to the desired results. Résumé. Basé sur les travaux de Brugallé et Mikhalkin, Fomin et Mikhalkin ont donné des formules pour calculer les degrés de Severi classiques N en utilisant des graphes aux arêtes longues. En 2012, Block, Colley et Kennedy ont considéré la version logarithmique d’une fonction spéciale associée aux graphes aux arêtes longues qui apparait dans la formule de Fomin et Mikhalkin, et ont conjecturé qu’elle est linéaire. Ils ont depuis montré leur conjecture. Au même moment, motivés par leur conjecture, nous avons considéré une fonction spéciale multivariée associée aux graphes aux arêtes longues qui généralise leur fonction. Le résultat principal de cet article est que la fonction multivariée que nous définissons est toujours linéaire. La première application de notre résultat de linéarité est qu’en l’appliquant aux degrés de Severi classiques, nous retrouvons le fait que Q est quadratique et une borne δ pour le seuil de polynomialité de N . Ensuite, dans un travail en commun avec Osserman, nous appliquons le résultat de linéarité pour une famille particulière de surfaces toriques et obtenons des résultats sur les polynômes universels ayant des connexions avec la formule de Göttsche, Yau et Zaslow. En conséquence, nous obtenons des formules combinatoires pour deux séries formelles B1(q) et B2(q) non-identifiées apparaissant dans la formule de Göttsche, Yau et Zaslow. La preuve de notre résultat de linéarité est purement combinatoire. Nous définissons des τ -graphes qui généralisent les graphes aux arêtes longues, une famille étroitement liée d’objets combinatoires que nous appelons les (τ ,n)-mots. En introduisant des fonctions de hauteur et un concept d’irreductibilité, nous décrivons des façons de décomposer certaines familles de (τ ,n)-mots en mots irreductibles, ce qui nous conduit aux résultats souhaités. †Fu Liu is partially supported by NSF grant DMS-1265702. 1365–8050 c © 2016 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
منابع مشابه
Universal Polynomials for Severi Degrees of Toric Surfaces
The Severi variety parameterizes plane curves of degree d with δ nodes. Its degree is called the Severi degree. For large enough d, the Severi degrees coincide with the Gromov-Witten invariants of CP. Fomin and Mikhalkin (2009) proved the 1995 conjecture that for fixed δ, Severi degrees are eventually polynomial in d. In this paper, we study the Severi varieties corresponding to a large family ...
متن کاملq-Floor Diagrams computing Refined Severi Degrees for Plane Curves
The Severi degree is the degree of the Severi variety parametrizing plane curves of degree d with δ nodes. Recently, Göttsche and Shende gave two refinements of Severi degrees, polynomials in a variable q, which are conjecturally equal, for large d. At q = 1, one of the refinements, the relative Severi degree, specializes to the (non-relative) Severi degree. We give a combinatorial description ...
متن کاملOn the Torsion of Chow Groups of Severi-brauer Varieties
In this paper, we generalize a result of Karpenko on the torsion in the second quotient of the gamma filtration for Severi-Brauer varieties to higher degrees. As an application, we provide a nontrivial torsion in higher Chow groups and the topological filtration of the associated generic variety and obtain new upper bounds for the annihilators of the torsion subgroups in the Chow groups of a la...
متن کاملArithmetics and Combinatorics of Tropical Severi Varieties of Univariate Polynomials
We give a description of the tropical Severi variety of univariate polynomials of degree n having two double roots. We show that, as a set, it is given as the union of three explicit types of cones of maximal dimension n − 1, where only cones of two of these types are cones of the secondary fan of {0, . . . , n}. Through Kapranov’s theorem, this goal is achieved by a careful study of the possib...
متن کاملTorsion in CH of Severi-Brauer varieties and indecomposability of generic algebras
We compute degrees of algebraic cycles on certain Severi-Brauer varieties and apply it to show that: a generic division algebra of index p and exponent p is not decomposable (in a tensor product of two algebras) for any prime p and any α except the case when p = 2 and 2 | α; the 2-codimensional Chow group CH of the Severi-Brauer variety corresponding to the generic division algebra of index 8 a...
متن کامل